Calpain inhibitor AK 295 inhibits calpain-induced apoptosis and improves neurologic function after traumatic spinal cord injury in rats.

نویسندگان

  • A Colak
  • M Kaya
  • A Karaoğlan
  • A Sağmanligil
  • O Akdemir
  • E Sahan
  • O Celik
چکیده

BACKGROUND An increase in the level of intracellular calcium activates the calcium-dependent neutral protease calpain, which in turn leads to cellular dysfunction and cell death after an insult to the central nervous system. In this study, we evaluated the effect of a calpain inhibitor, AK 295, on spinal cord structure, neurologic function, and apoptosis after spinal cord injury (SCI) in a murine model. METHODS Thirty albino Wistar rats were divided into 3 groups of 10 each: the sham-operated control group (group 1), the spinal cord trauma group (group 2), and the spinal cord trauma plus AK 295 treatment group (group 3). After having received a combination of ketamine 60 mg/kg and xylazine 9 mg/kg to induce anesthesia, the rats in groups 2 and 3 were subjected to thoracic trauma by the weight drop technique (40 g-cm). One hour after having been subjected to that trauma, the rats in groups 2 and 3 were treated with an intraperitoneal injection of either dimethyl sulfoxide 2 mg/kg or AK 295 2 mg/kg. The effects of the injury and the efficacy of AK 295 were determined by an assessment of the TUNEL technique and the results of examination with a light microscope. The neurologic performance of 5 rats from group 2 and 5 from group 3 was assessed by means of the inclined plane technique and the modified Tarlov's motor grading scale 1, 3, and 5 days after spinal cord trauma. FINDINGS Light-microscopic examination of spinal cord specimens from group 2 revealed hemorrhage, edema, necrosis, and vascular thrombi 24 hours after trauma. Similar (but less prominent) features were seen in specimens obtained from group 3 rats. Twenty-four hours after injury, the mean apoptotic cell numbers in groups 1 and 2 were zero and 4.57 +/- 0.37 cells, respectively. In group 3, the mean apoptotic cell number was 2.30 +/- 0.34 cells, a value significantly lower than that in group 2 (P < .05). Five days after trauma, the injured rats in group 2 demonstrated significant motor dysfunction (P < .05). In comparison, the motor scores exhibited by group 3 rats were markedly better (P < .05). CONCLUSIONS AK 295 inhibited apoptosis via calpaindependent pathways and provided neuroprotection and improved neurologic function in a rat model of SCI. To our knowledge, this is the first study to evaluate the use of AK 295, a calpain inhibitor, after SCI. Our data suggest that AK 295 might be a novel therapeutic compound for the neuroprotection of tissue and the recovery of function in patients with a SCI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calpain inhibitor inhibits p35-p25-Cdk5 activation, decreases tau hyperphosphorylation, and improves neurological function after spinal cord hemisection in rats.

Aberrant calpain activation is a key mediator of neuron death. We examined the cell-permeable calpain inhibitor MDL28170 in the pathophysiological processes after spinal cord injury (SCI) including p35-p25- cyclin-dependent kinase-5 (Cdk5) activation, tau hyperphosphorylation, neuron cell death, calpain I activation, astrogliosis, and microglia activation. Our study showed that intrathecal admi...

متن کامل

Effects of Mechanical Force on Cytoskeleton Structure and Calpain-Induced Apoptosis in Rat Dorsal Root Ganglion Neurons In Vitro

BACKGROUND A sudden mechanical insult to the spinal cord is usually caused by changing pressure on the surface of the spinal cord. Most of these insults are mechanical force injuries, and their mechanism of injury to the spinal cord is largely unknown. METHODS Using a compression-driven instrument to simulate mechanical force, we applied mechanical pressure of 0.5 MPa to rat dorsal root gangl...

متن کامل

Neuroprotective effects of atomoxetine against traumatic spinal cord injury in rats

Objective(s):Spinal cord injury (SCI) often causes serious and irreversible neurological deficit leading to disability or impairment of normal physical activity. Atomoxetine, a selective norepinephrine transporter (NET) inhibitor has gained much attention in the field of the neurodevelopmental disorder, but its effect on SCI has not been evaluated. The present study has been undertaken to inves...

متن کامل

Calpain 1 knockdown improves tissue sparing and functional outcomes after spinal cord injury in rats.

To evaluate the hypothesis that calpain 1 knockdown would reduce pathological damage and functional deficits after spinal cord injury (SCI), we developed lentiviral vectors encoding calpain 1 shRNA and eGFP as a reporter (LV-CAPN1 shRNA). The ability of LV-CAPN1 shRNA to knockdown calpain 1 was confirmed in rat NRK cells using Northern and Western blot analysis. To investigate the effects on sp...

متن کامل

Effects of Methylprednisolone on the Expression and Activity of Calpain Following Ischemia-Reperfusion Spinal Cord Injury in Rats

The present study was undertaken to examine the effects of methylprednisolone on the expression and activity of calpain in spinal cord tissue following spinal cord ischemia-reperfusion injury in rats. Adult male Sprague-Dawley rats were subjected to sham operations, ischemia-reperfusion and vehicle treated, or ischemia-reperfusion with methylprednisolone administration after injury. The express...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocirugia

دوره 20 3  شماره 

صفحات  -

تاریخ انتشار 2009